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Panther is a decentralized privacy
meta-protocol enabling confidential,

trusted transactions and
interoperability with DeFi.

This whitepaper presents Panther Protocol, a privacy protocol for digital assets. The Panther
Protocol’s main goals are:

1. providing a secure, private transaction ecosystem with a superior user experience,
2. maintaining composability with decentralized finance (DeFi) protocols,
3. ensuring privacy backed by a game-theoretic model,
4. establishing verifiable trust relationships between participants, and
5. developing a novel price discovery mechanism for privacy.

This whitepaper aims to weave together the topics of DeFi, privacy, trust, compliance, eco-
nomics, game theory, and privacy-enhancing technology (such as zero-knowledge proofs) into
a coherent thesis that motivates and inform the design of the Panther Protocol. We will dive
into Panther’s architecture, technical design, governance, and tokenomics, and finally, con-
clude with a reflection on where Panther is now and where it will take us in the future. This is
a “living” whitepaper that will be updated as ourwork and community develop over the course
of the project.
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1 Introduction

Today, decentralizedfinance (DeFi)1 applications are predominantly built on the Ethereumpro-
tocol where all transaction history and balances are public by default. In fact, most block-
chains lack privacy protection, making it difficult for investors and users to conduct trades
freely and confidentially.

Whilst privacy-native cryptocurrencies exist (e.g. Zcash, Monero), they are not composable
with the DeFi ecosystem, limiting their utility. Separately, privacy protocols that exist today
were not designed with regulatory compliance in mind. This discourages institutional invest-
ors from experimenting in privacy protocols, which creates a huge challenge in bootstrapping
liquidity and privacy, preventing private assets from becoming mainstream.

Panther is an end-to-end privacy protocol for digital assets, which can be deployed in a com-
pliant way on any public blockchain.

Key differentiators / features:

• Enables trusted transactions and regulatory compliance whilst preserving privacy

• Privacy mining and price discovery mechanism

• DeFi composable

• Interoperability between multiple blockchains

We provide in Table 1 a high level comparison between the design of Panther and the status
quo of several other privacy-preserving protocols.

In this paper, we first set the scene by providing a brief overview of the current decentralized
finance landscape. Wemove on to the subject of privacy, examining the topic fromethical, eco-
nomical, and technical standpoints, and how it applies to the world of DeFi. We then describe
the Panther Protocol in detail in terms of its development, technical design, governance, and
token economics. We end with some concluding remarks on what we hope to achieve, and
consider future directions for this project.

Project User
Experience

Trust /
Compliance

DeFi
Composable

Game-
theoretic
security

Cross-
chain

Zcash Average × × × ×
Tornado Cash Complex × × × ×
zk.money Good × WIP2 × ×
Incognito Good × WIP3 × ✓
Panther4 Good ✓ ✓ ✓ ✓

Table 1: Comparison between Panther and other privacy protocols.

1For an introduction to DeFi please refer to [30]
2 At the time ofwriting, Aztec had recently announced they are in the early stages of development of interoperability

with DeFi protocols.
3 See Incognito’s 2021 roadmap.
4 Since Panther is a new project, this row reflects Panther’s design and key focus areas.

6

https://we.incognito.org/t/incognitos-2021-privacy-roadmap-for-the-world/7235


v1.0.1

2 Background on Privacy

For millennia since the dawn of civilization, all human communications have been local and
ephemeral, and therefore necessarily private. From ancient Rome to the modern day, as the
speed of communication and data processing capacity grew exponentially over the centuries,
so did the temptation, means and opportunity for those in power to eavesdrop on conversa-
tions and collect personal data on a grand scale. The privacy landscape is therefore inextri-
cably linked with the evolution of technology.5

In this sectionweexamine how the blockchain technology andmodernmathematics can shape
the privacy landscape in the era of decentralization and advanced cryptography.

2.1 Privacy on Blockchains

Blockchain technology is celebrated for paving the way to decentralization by removing cen-
sorship and anti-competitive power from traditional centralized institutions. Paradoxically,
however, while blockchains take away control from institutions, their openness makes them
a perfect platform for targeted monitoring as well as mass surveillance.

In order to achieve network consensus, the conventional blockchain model requires total
transaction transparency. That is to say, all transaction data, including sender and recip-
ient addresses, value, currency or token type, smart contract data, and transaction timing
are all in the clear for all to see. Blockchains are thus a treasure trove of data representing
user’s private remittances, financial holdings, Non-Fungible Token (NFT) purchases, currency
exchanges, etc. These can often be supplemented by off-chain metadata to unmask the real
world identity behind the wallet addresses.

In a research note [3], Angeris et al. found that in the context of a type of decentralized ex-
change known as a Constant Function Market Maker (CFMM), “privacy is impossible with the
usual implementations of CFMMsundermost reasonablemodels of an adversary and provide
some mitigating strategies”.

Fortunately, advances in cryptographyandprivacy-enhancing technology in recent yearshave
allowedus to clawbackmuch-neededprivacy fromblockchain transactions. For further read-
ing into the subject, we refer the reader to the survey by Bernabe et al. [5] as well as the list
of papers and articles found on [23].

2.1.1 Notions of Privacy

Here we define some terms related to notions of privacy properties on blockchains that we
may use in later sections.

Unlinkability: A set of transactions is unlinkable if a third-party observer is unable to deter-
mine (with a level of confidence) whether any sender’s or recipient’s identity belongs to the
same individual, and therefore unable to backtrace the origin of any of the transactions.

Third-party anonymity/privacy: A transaction is third-party anonymous (or private) if the

5For the reader interested in the subject of privacy, Chapter 26 of [2] provides a general discussion of surveillance
and privacy, while surveillance capitalism is explored in [34] and a history of wiretapping in [8].
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sender and recipient can identify each other but a third-party observer cannot learn anything
about either party.

Private transaction: A transaction that is fully obscured, meaning all “interesting” data fields,
including sender, recipient, currency, amount, and fees cannot be extracted by a third-party
observer. The existence of the transaction itself remains observable.

Unobservability: A transaction is unobservable when the timing and the existence of the
transaction itself cannot be determined by a third-party observer.

2.2 Financial Privacy vs Compliance

2.2.1 Financial Regulations

One of the most influential organizations in combating financial crimes is the Financial Action
Task Force (FATF), an inter-governmental institution founded in Paris. Its official recommen-
dations are ratified by its member states into its own laws.

Under FATF recommendations, the financial institutions are required to complywith Anti-Mon-
ey Laundering/Countering the Financing of Terrorism (AML/CTF) regulations. Compliance
with such regulations typically involves customer due diligence and risk assessment, trans-
action monitoring, and fulfilling a wide range of reporting to the authorities.

In the cryptoassets space, Financial Crimes Enforcement Network (FinCEN) is one of themajor
bodies that regulates activities on blockchains in the United States. In a recent controversial
proposal, FinCEN proposed a new rule6 for cryptocurrency exchanges to have to maintain
customer identity information on transactions over $3,000 and submit to them reports with
the same details if over $10,000.

2.2.2 Problemswith Compliance

In the developed countries, the current compliance regime operates under something akin
to a guilty unless proven innocent presumption. Segments of society are denied access to
financial services. Customers’ Personally Identifiable Information (PII) and transaction data
are by default collected, stored, data-mined for patterns and subject to sharing with third
parties and authorities. A summary of benefits and drawbacks in the current financial system
is illustrated in Figure 1. At any time, financial assets may be frozen, confiscated, devaluated,
or undergo a “hair cut”, sometimes justifiably, often not.

We outline below some of the shortcomings of the current financial compliance regime.

Privacy. Customers of financial services are typically subjected to lengthy and intrusive scru-
tiny into their identity and personal history. Once on-boarded, they are subject to continuous
monitoring of transactions that will reveal their sexual orientation, health conditions, politi-
cal preferences, places traveled, social interactions, associations and so on. In the wrong
hands, such information may be used for blackmail, denying insurance, stalking, denying job
applications, inclusion on the no-fly list, etc.

Ineffectiveness. There is little research on the efficacy of AML/KYC regulation. Regula-

6See https://home.treasury.gov/news/press-releases/sm1216
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Figure 1: Data Sharing Benefits and Drawbacks (WEF/Deloitte)

tors themselves appear only interested in imposing ever more stringent requirements with-
out pausing to evaluate whether themeasures achieve their objectives, andmore importantly
whether they justify the monetary and privacy costs.

A recent study by Pol [21] finds that “the anti-money laundering policy intervention has less
than 0.1% impact on criminal finances, compliance costs exceed recovered criminal funds
more than a hundred times over, and banks, taxpayers and ordinary citizens are penalized
more than criminal enterprises”.

Separately a report by the British Banking Association (BBA) mentions “The costs of financial
crime compliance for the British banking industry have gone beyond a ‘tipping point’ in com-
parison with the AML/CTF benefits being accrued”.

Regulatory conflicts. Often contradictory to data privacy legislation such as the EU’s GDPR.
One example is data sharing between EU and non-EU countries. The unharmonized regulatory
frameworksmake it risky for financial services to fall foul of one set of regulationswhen trying
to comply with another.

Inefficiency. Users interacting with multiple institutions must repeat essentially the same
KYC procedure with each one separately. There is not an infrastructure for reusable KYC
proof that a user can be presented to multiple verifying organizations. These duplicated ef-
forts impose costs in terms of time andmonetary, aswell as in increased risk of data breaches
[17].

Monetary cost. Compliance is costly to implement and manage. According to a study [27] the
AML compliance costs for US and Canadian financial institutions for the year 2019 at over
$31.5B, at an average of about $1.5M for small firms and over $14M for mid/large firms.

Security risks. Collection and warehousing of PII and transaction history is a liability, some
might even describe it as a toxic asset [25]. Threats include abuse of data, unauthorized ac-
cess by staff, data breach by malicious actors (including nation-state). High costs for imple-
menting protection against these threats in terms of policies and procedures, authentication
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and authorization systems, continuous monitoring, auditing. Still, breaches continue to hap-
pen. To illustrate the scale of the issue, breaches in China’s Sina Weibo and Marriot Inter-
national in the US, two of the most high profile breaches in recent years, have resulted in
compromise of over one billion user accounts.

Erosion of trust. A survey commissioned by IBM [31] shows that only 20% of US consumers
“completely trust” the organizations they interact with to maintain the privacy of their data.
Customers fear that their data could be used to harm them (e.g. through identity theft) and
more broadly that unintended parties can learn something about them that they wish to keep
private (e.g. sensitive purchase history). This is hardly surprising given some of the recent
high profile cases affecting a large portion of US Citizens, including data abuse scandal at
Cambridge Analytica and breaches at Capital One, Experian and Equifax.

Financial exclusion. According to Jonathan Fisher QC in [22] “On any view, the anti-money
laundering and counter-terrorist financing regime aggravates financial exclusion by system-
atically excluding certain groups of people and businesses from products and services of-
fered by financial institutions. The significance of the problem cannot be underestimated,
since financial exclusion can have a devastating impact on individual lives, the business com-
munity, and society in general.” The impact includes exacerbation of inequality, reduced ac-
cess to consumer protections, stunted innovation and reduced levels of overall economic de-
velopment.

Indeed, FATF has recently officially recognized financial exclusion as an “unintended conse-
quence” of their standards and has launched a new project to address it [12].

Non-universal and unjust. Different rules apply for governments and powerful corporations
vs ordinary citizens. Governments can finance rebel/terror groups to bring about regime
change. Corporations and high networth individuals can set up complex tax evasion schemes.

Anti-competitive. Smaller firms are faced with more challenges with AML compliance [27]
than larger firms. This creates a significant barrier to entry for start-ups and thus deters
financial innovations.

2.2.3 Solutions

While it is not our aim to address every shortcoming with the current compliance landscape
(nor can we hope to do so), we wish to at least partially redress the compliance cost/benefit
balance by advocating the use of Privacy Enhancing Technology (PET). In addition to harmo-
nizing with privacy regulations, PET also has the potential to increase efficiency, lower costs,
and enhance the security and trustworthiness of the financial system.

The problem with traditional compliance stems from the assumption that in order to detect
financial crime, it is necessary to gather and analyze large amounts of raw data. However,
with the advancement of computer science andmathematics, this assumption no longer holds
true.

Recent research and development into PET has allowed a party to verify, process, and make
inferences froma target data set, without directly accessing the underlying data. PET is thus a
practical manifestation of the Least Privilege Principle, a cornerstone of sound system design
for secure, dependable systems.

We provide a brief survey below. Some of the PETs described here will be further explored in
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a later section.

Differential Privacy: A family of techniques which add noise to a data set so that it is impos-
sible to reverse-engineer the individual inputs [10].

Homomorphic Encryption: Special encryption schemes the output of which can be shared
with a potentially untrusted third-party for computation and analysis, but not decryption back
into the original data [32].

Zero Knowledge Proofs: Methods with which users can prove their knowledge of a value
without revealing the value itself [14].

Secure Multiparty Computation: Protocols with which data computation is spread across
multiple parties such that no individual party can see the complete set of inputs [11].

Selective Disclosure Schemes: Also known as Anonymous Credentials Schemes, these are
proof-of-knowledge schemes in which the prover who possesses some certified credentials
containing multiple attributes may, at their discretion, choose to disclose a selected subset of
those attributes to a verifier.

2.2.4 Can Privacy and Compliance Co-exist?

While we do not presume all the above issues can be practically and immediately addressed
by PET, regulators should recognize the development of PET and its potential. They should
start, at the very least, to entertain the possibility of embracing PET and move away from the
current prescriptive modus operandi, that of non-discriminatory wholesale data collection,
analysis, and sharing.

More generally, they should take a more scientific and evidence-based approach in policy-
making, taking into account costs both tangible and intangible (such as privacy), actual real-
ized benefits (crime reduction), and technological solutions that have the potential to achieve
their goals in a far more effective and dignity-respecting manner. We believe that in the long
term this will lead to a global financial system that is far more inclusive and just. Those to
embrace this approach can deservedly claim the moral high ground over regimes that do not
respect privacy and other forms of basic human rights.

3 Economics of Privacy

In this section, we will discuss pure economic aspects of privacy, especially from amicroeco-
nomic perspective. Empirical research suggests that most people usually place a low value
on their privacy.

Often, however, it is not clear why. Is this a deliberate choice of an individual, or insufficient
awareness of the risks? The latter is present in the misunderstanding of howmuch economi-
cally relevant information is shared about people on certain platforms.

Developing one unifying economic theory of privacy is impossible because economically rele-
vant privacy issues arise in many different contexts. There are diverse situations where the
protection of privacy can both increase and decrease individual or social welfare. In modern
digital economies, consumers cannot make informed decisions about their privacy, because

11
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consumers often have incomplete information regarding when their data is collected, how it
is used, and what the consequences of this use are.

Privacymeans different things to different people. We constantly navigate privacy boundaries,
both as individuals and as consumers. The decisions we make about them determine explicit
and implicit benefits and costs, both for ourselves and for society.

Particular interest in privacy is focused on its informational aspect: the trade-offs from pro-
tecting or sharing personal data. Some sub-fields of information economics are related to
privacy economics, because they deal with the trade-offs coming from the public or private
states of information. For example, an auction can be designed so that participants reveal
their true costs or valuations, or taxes can be designed in such a way that it is optimal to re-
port truthfully. Research on auctions and optimal taxation deals with the private information
of economic agents (e.g., consumers, firms), while privacy economics deals more specifically
with the personal information of actual individuals.

One of the basic examples of individual economic losses caused by not having privacy is the
following. Suppose there is a buyer, and a seller, who owns an item. Suppose the valuation
of the buyer for the item, his reserve price, is vB . The valuation of the seller for the item, his
reserve price is vS . Both are private information. There are gains from trade if and only if
vS < vB , and gains are equal to vB − vS . The main question of commerce is: how are these
gains shared? To obtain these gains, the price p, so that vB < p < vS , has to be found. This
question is studied under the name of the double auction in economic literature. Finding op-
timal posted price p is a topic of [6]. Optimal price requires distributional assumptions on vS

and vB . However, if the seller knows buyer-relevant transactions, he can estimate vB closely
and post a price p very close to vB , therefore, taking all gains from the trade himself. On the
other hand, if the buyer knows seller-relevant information, he can post a price p arbitrarily
close to vS and realize almost all gains.

Privacy of transactions is important in auction settings as well. Sealed bid auctions are om-
nipresent. In blockchain environments, however, often both the bids7, and sometimes deposits
are public information, which gives rise to undesirable behavior of the auction participants.
The latter is the case, for example, in the namebase auctions. The possibility of observing
deposits fundamentally changes the implications of the auction, especially if bidding happens
sequentially. Since bidding is costly, the deposit has to be staked for a substantial amount of
time and these can be used as a costly signal for a high valuation; this implies multiple ineffi-
ciencies. In order to engage in costly signalling, a bidder who bids first and has a high valu-
ation, deposits a lot. If high valuations are likely, entry deterrence may happen through high
deposits: a bidder who bids first can deter subsequent bidders from participating in the auc-
tion. Partial pooling may also happen in the equilibrium. Bidders of different valuations may
deposit the same amount. The auction fails to allocate the item to the bidder with the highest
valuation, which is the ultimate goal of the original protocol. See [24] for a formal treatment
of implications.

Privacy of information, however, is not the opposite of sharing of information, rather, it can be
used by a strategic player as a tool to optimize his payoffs. It can be seen as a control mech-
anism over sharing. Releasing information selectively can increase advantage in economic
interactions, and therefore, expected utility.

7See for example Gnosis Auction.
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A survey of various sub-fields in the economics of privacy is given in [1].

One notable example where the lack of privacy in the blockchain context causes loss of value
is so-called Miner Extractable Value (MEV), sometimes referred to as Maximal Extractable
Value. Consider the scenariowhereusers place orders in anAutomatedMarketMaker (AMM)
decentralized exchange. Orders are of a type (a, b), where a denotes the amount of the first
cryptocurrency that the user is spending, and b is the minimum amount of the second cryp-
tocurrency the user wants to receive in return. Independently from the rule by which a par-
ticular AMMdetermines price, if the user is not aware of the true price relation between these
two cryptocurrencies, there is a potential sandwich attack. The miner can place two orders,
one before and one after the proposed order of the user, so that he/she extracts value by
arbitrage. These types of attacks are characterized in [4].

4 Building Blocks for Privacy-Preserving DeFi

In this section, we provide a brief survey on the currentmathematical and technological build-
ing blocks that allow us to develop practical privacy-preserving DeFi solutions.

4.1 Zero Knowledge Proofs

In cryptography, a zero-knowledgeproof or zero-knowledgeprotocol (ZKP) is a classofmethod
bywhich one party (the prover) can prove to another party (the verifier) that they know a value
x, without revealing x itself or any other information.

The seminal work on ZKP was published by Goldwasser, Micali and Rackoff in 1985 [14].
While their proposed zero-knowledge schemewas not practical, the result demonstrated that
ZKP was a mathematical possibility that sparked its continual research to this day. A zero-
knowledge proof must satisfy three properties:

• Soundness: if the statement is false, the verifier will always reject.8

• Completeness: if the statement is true, the verifier will always accept it.

• Zero-knowledge: the verifier learns no information except for the truth of the statement.

Interactive ZKPs require interactions between the prover and the verifier when validating the
proof, whereas non-interactive zero-knowledge (NIZK) proofs allow the prover to generate
and publish a proof that can be validated by any verifier at any timewith no further interaction.
For this reason, non-interactive ZKPs are particularly useful in the blockchain setting.

Succinct Non-interactive Argument of Knowledge (SNARK) is a class of practical proofs which
possesses the following properties:

• Succinct: the size of the proof is small compared to the size of the statement being
proved.

• Non-interactive: it does not require rounds of interaction between the prover and veri-
fier.

8Except for a negligibly small probability.
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• Argument: a weaker notion of a mathematical proof where we assume the prover has
bounded computational resources.

• Knowledge: the prover cannot construct a proof without knowing a certain witness for
the statement.

A SNARK is not necessarily zero-knowledge. If a SNARK allows proofs to be conductedwithout
revealing the witness, we call it a zero-knowledge SNARK or commonly zkSNARK. Generating
a zkSNARK proof is a multi-stage process, an example of which is illustrated in Figure 2. For
more details, an introduction to zkSNARKs and their recent development is presented in [19].

Figure 2: zkSNARK workflow

In DeFi and blockchain in general, zero-knowledge proofs are a solution to two different prob-
lems. Their zero-knowledge property provides privacyandanonymity to users’ transactions
and their utility as proof of computation are exploited to implement blockchain scaling solu-
tions.

4.2 SecureMulti-Party Computation

Secure Multi-party Computation (abbreviated asMPC) is a subfield of cryptography with the
goal of creatingmethods for parties to jointly compute a function over their inputs while keep-
ing those inputs private.

In an MPC, where we have N > 1 participants each have private input xi, respectively x1, x2,

. . . , xN . Participants want to compute the value of a public function F on that private data
F(x1, x2, . . . , xN ) while keeping their own inputs secret.

Yao [33] introduced the notion of MPC, exemplified in the hypothetical millionaire’s problem:
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‘Two millionaires wish to know who is richer; however, they do not want to find out inad-
vertently any additional information about each other’s wealth.” In this instance F is simply
(x1 ≤ x2)which outputs a Boolean result (true or false) and x1, x2 are the respective wealth of
millionaires 1 and 2.

Secret Sharing (SS) is an important primitive in MPC protocols. As its name suggests, SS
allows a secret to be split and shared among different parties. A useful property of SS is that
we can set it up so that the secret is shared between n parties, k of which, where (1 < k ≤ n),
must be combined to reconstruct the original secret. On their own, or in groups of less than
k, the shares will reveal no information whatsoever about the secret.

For further study, a comprehensive treatise on MPC is available from [11].

4.3 Trusted Computing Solutions

In our context, Trusted Computing refers to the general concept of the use of an isolated com-
puting resourcewhich offers ameasure of guarantee on the security and integrity of the com-
putation even if the main application has been compromised.

Hardware Security Modules (HSMs) are physical devices commonly used in banks to provide
secure, tamper-resistance storage of keys and their management. Typically, keys secured
with an HSM never leave the confines of the device. Access to cryptographic operations is
provided by application programming interfaces (APIs) which accept a key handle as a pa-
rameter. HSMs may also implement a security mechanism which wipes the key material if a
physical attack attempt has been detected. Some HSMs offer programmability to allow cus-
tom code to be run inside the HSM.

A Trusted Execution Environment (TEE), also known as a Secure Enclave, is a secure area
within a general purpose processor which guarantees confidentiality and integrity of code
and data being executed within. In practice, this protects sensitive data from being accessed
even if the main operating system is compromised. Some TEE implementations also support
remote attestationwhich cryptographically proves that you are interactingwith a genuine TEE
(rather than a non-secure processor running the same code). Two popular implementations
of TEEs are ARM’s TrustZone on mobile devices and Intel’s SGX on servers.

Confidential Computing takes the concept of TEE a step further by securing complete virtual
machines (VMs), which among other things support real-time data encryption. For example,
the Google Cloud Platform offers Confidential VMs based on AMD EPYC processors. Similar
features are supported in OpenStack [29], the most widely deployed open-source cloud in-
frastructure globally9.

By offloading sensitive computingworkloads to a trusted computing environment, applications
can provide and attest to a level of guarantee that private data cannot be accessed and used
in an unauthorized manner. The Signal messenger application, for example, uses Intel SGX
to allow a user to discover contacts already registered on the platform without exposing the
contact list to the Signal employees [18].

9Due to an engineering effort previously led by a member of the Panther team [28].
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4.4 Mixing Services

Amixing service (sometimes knownas a tumbler) is a service that obscures the audit trail back
to a cryptoasset’s original source. This is usually achieved by breaking the link between the
fund’s input address and output address, thereby allowing an identifiable or “tainted” asset to
become anonymous and untainted.

This in turn enables assets passing through the mixer to regain (or retain) their fungibility,
which is crucial characteristic of sound money. If the fungibility of an asset class is not safe-
guarded, it cannot serve as a reliable and stable store of value, and therefore cannot be re-
garded as a hard currency.

Forbackground, Chaum introduced thenotionof providingprivacyusingmixingmethods in [7].
A survey of techniques used by mixing services is provided in [16].

Loopix [20] is a recently proposed mixing-based anonymity system. It uses a mixing tech-
nique that is based on the independent delaying of messages, which makes the timings of
packets unlinkable. Moreover, Loopix introduces a number of types of decoy traffic to thwart
de-anonymization attacks.

The two main factors that affect the level of privacy offered by mixing services are:

• the size of the anonymity set,

• the volume of transactions in the anonymous pool prior to withdrawal, often proxied by
time in the pool.

The larger these two parameters are, the harder it is for a third-party observers to track the
flow of the anonymized cryptoassets, and conversely, the higher the level of plausible denia-
bility a user can claim about their transaction activities.

4.5 Limitations of Privacy Enhancing Technology

While a casual understanding of PETmay lead the reader to celebrate that the privacy problem
is “solved”, a deeper examination of the subject matter will point to a less Utopian, but still
optimistic, conclusion.

At the core, the realization is that PET shifts trust rather than removing it from systems al-
together. Whereas traditionally privacy depends on trust in the regulatory frameworks and
organizational policies and procedures, PETs require trust of mathematical proofs and their
interpretation, the strength of hardness assumptions of mathematical problems10, protocol
implementation correctness, the trustworthiness of software dependencies and the security
of the computing resource supply chain.

In addition, the level of privacy and anonymity may be compromised by user error or limited
by the small pool of participants (the anonymity set).

We are nonetheless optimistic as they are steps in the right direction of removing or at least
reducing data available to and trust bestowed upon traditional organizations. We have seen
areas of cryptography that have matured over the past few decades, for example, public-
key cryptography was not so long ago a completely new concept. Today public-key based

10Intuitively these are what make cryptographic schemes difficult to break.
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key agreement and signature algorithms form the backbone of Internet security and indeed
blockchain technology itself.

Researchers have made tremendous progress in privacy techniques and there is every rea-
son to expect the trend to continue so that one day we will expect zero-knowledge to be part
and parcel of services that we receive, much like we expect seat belts and ABS brakes in pas-
senger vehicles and authenticated encryption when browsing the web.

5 Implementation Options for Private DeFi

Currently, most programmatic functionality on blockchains is executed in smart contracts
for which Ethereum is the dominant platform. The following solutions present the prevailing
technical options for implementing DeFi privacy on Ethereum and other networks which do
not preserve privacy.

5.1 Smart Contract Solutions

In smart contract based solutions, privacy is achieved by operations performed in the smart
contract layer. The user deposits assets into a smart contract which in turn performs oper-
ations such as mixing. At the end of the operation, the smart contract makes the anonymized
asset available to the user to be withdrawn to a fresh, unused address.

Figure 3 illustrates a mixer solution implemented using smart contracts.

5.2 Private Cross-chain Solutions

Figure 4 illustrates a privacy solution which enables DeFi operations to be handled by a non-
privacy-preserving Layer 1 chain (Ethereum) on behalf of a privacy-preserving chain. This
approach requires a custom adapter to be created for each of the applications with which it
needs to interact, and these communicate across bridges to the Layer 1 which handles the
DeFi transactions.

5.3 Private Layer 2 Solutions

Layer 2 solutions provide privacy bymixing transactions off-chain before committing on chain,
through the use of e.g. ZK-Rollups11. Besides processing users’ balances privately, this often
allows many transactions to be bundled together off-chain which are periodically synchro-
nized onto the blockchain in a highly compressed form. This approach increases transaction
throughput and provides savings in transaction fees such as gas costs when operating on top
of Ethereum, although it is likely to result in increased transaction latency.

A survey of Layer 2 privacy enhancing solutions is provided in [15].

11An introduction to rollup solutions can be found in [13].
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Figure 3: Example mixer solution implemented with smart contracts
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Figure 4: Example of a cross-chain architecture enabling privacy

6 Panther Protocol Architecture

6.1 Actors and Components

The protocol consists of the following actors and components:

• Users: Owner of cryptoassets who interacts with the Panther ecosystem via a wallet
interface.

• Peerchains: Existing blockchains which Panther supports, and between which Panther
can support private transactions.

• zAssets: Privatelyminted cryptoassets that arederivativesof other typically non-private
cryptoassets (e.g. Ethereum ERC-20 tokens and similar). A zAsset is pegged 1:1 to the
underlying cryptoasset which is locked as collateral in Panther Vaults; the latter may be
partially or fully redeemed by burning some or all of the minted zAsset.

• PantherVaults: Autonomous, zero knowledge, self-custodial smart contracts which act
as decentralized custodians for collateral of zAssets.

• ServiceProviders: Entities that provideapplicationswhich support private transactions
of zAssets by Panther users. Optionally, they may also request to verify attributes of
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the users and their transactions, e.g. in order to satisfy regulatory compliance require-
ments.

• TrustProviders: Entitieswhich provide verifiable statements (attestations) about users,
which allow Service Providers to increase their level of trust in those users.

• Panther Pools: A collection of asset pools; each pool allows users to privately deposit,
withdraw and transact on any peerchain through the use of one or more zAssets. All
transactions are associated with a piece of specially formatted data which will allow
users to voluntarily disclose details of transactions and link them (even retroactively) to
attestations from Trust Providers. (See the section on Disclosure Mechanisms for more
details.)

• Panther Privacy Miners: Participants in the Panther ecosystem which frequently con-
tribute zAsset transactions to the anonymity set, and earn Panther Tokens as a reward.

• Panther DAO: A decentralized autonomous organization for protocol governance.

• Relayers: A network of proxy nodes for relaying transactions onto the peerchain in a
privacy-preserving manner.

Figure 5 shows the high-level interactions between these different actors and components.
For clarity, many details have been simplified or omitted.

6.2 Assumptions and ThreatModel

Assumptions. For the user:

• User’s device is secure and free of malware

• User takes precaution to protect their own network layer privacy, e.g. use Tor relay to
randomize their IP address

Threatmodel. In our analysiswe adopt a version of theGlobal Passive Adversary (GPA) threat
model similar to that used in [20]. In summary, we assume a powerful adversary who

• is able to observe, record all traffic on all traffic between users, Panthermixer pools and
third-party providers,

• is able to inject arbitrary traffic into any public networks and launch network attacks,

• is able to corrupt a minority of mix relays and observe all internal state therein

• is able to participate in Panther as a small number of users (below the Sybil attack [9]
threshold)

• is computationally bounded, e.g. is not able to forge digital signatures

• does not perform attacks by exploiting security bugs in software

The adversary’s goals may include:

• de-anonymizing transactions,
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Figure 5: Panther Protocol Architecture

• minimizing as far as possible the anonymity set of a transaction,

• tracing back to the origin of a transaction,

• following the onward journey of a transaction,

• determining general transaction patterns e.g. volume, frequency, address reuse.
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Figure 6: Global Passive Adversary Threat Model

6.3 Design Goals and Principles

Design Goals: Provide, within the Panther system of participants:

• Transaction unlinkability

• Transaction unobservability

• All participants are economically incentivized to behave honestly

Design Principles:

• Permissionless, allowing open participation

• Security and privacy by default

• Minimized trust assumptions

• Voluntary disclosures of private data

• Modular design by providing clean interfaces

• Easy integration with third-party services

• Upgradeable protocol without having to unshield already-minted zAssets

6.4 Enabling Trust whilst Preserving Privacy

Panther allowsusers to voluntarily generate and share disclosure statementswithwhichever
third parties they choose, in order to prove:

• details of their interactions with Panther Protocol, and

• other statementsabout themselveswhichmaybe required in order to interactwith coun-
terparties.
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The former is achieved by native functionality within Panther; the latter is achieved by Pan-
ther serving as a transport layer for data representing attestations about users originating
from Trust Providers, together with tools for both off-chain and on-chain verification of those
attestations, which can then be voluntarily disclosed by those users to Service Providers with
which the users wish to interact. These voluntary disclosures establish a trust relationship of
a Service Provider towards a user of their service, allowing them to interact privately whilst
reducing the risk exposure of the Service Provider.

Whilst it is expected that the primary use cases motivating the reduction of this risk will be
driven by the needs of Service Providers to comply with regulatory requirements, where it is
assumed that the user already trusts the identity of the Service Provider, it is possible that
the same mechanisms could also be used to establish trust in the opposite direction, i.e. from
the user towards the Service Provider. Indeed, it is also conceivable that the model could be
used to establish trust in user-to-user (a.k.a. P2P) transactions, or between Service Providers
(a.k.a. B2B), or even in cases where private transactions are not required.

Trust Providersare typically publicly visible and reputable organizations. They couldbebanks,
specialist KYC providers, certification authorities, government departments, notaries or a
partner working on their behalf such as an electronic signature provider.

It shouldbenoted that Pantheroperatesonapermissionlessmodelwhereanyonecanbecome
a Trust Provider, and it is up to the Service Providers to decide which Trust Provider(s) they
will trust. If a Service Provider announces that they will accept equivalent attestations from
multiple Trust Providers, then a user wishing to transact with that Service Provider also has
some freedom in which of those Trust Providers to use.

Trust Providers are incentivized to be honest and provide true verifiable statements, also
known as attestations, about users, by receiving payments from Service Providers or Users
in Panther Tokens.12

Panther will make it easy for the users to receive and securely store these attestations in a
decentralized manner, and to later retrieve those attestations and pass them to any Service
Providers which need them. The attestations can be provided and verified either off-chain
or on-chain; in the latter case, zero knowledge proofs are required in order to avoid public
disclosure of confidential data.

EachServiceProvider hasdifferent trust requirements, and thereforemust be free to trust (or
distrust) whichever Trust Providers they want. This implies that when receiving attestations
from users, they must knowwhich Trust Providers those attestations come from, so that they
can make their own decisions whether to trust those attestations.

Figure 7 shows the interactions between the user, Trust Providers, Service Providers, and the
Panther Protocol which makes it possible for the user to transact with Service Providers in a
trusted context without loss of privacy.

Example use cases:

1. A Trust Provider performs KYC for a Panther user, and provides them with a digitally
signed statements attesting any of the following:

12There needs to be a mechanism to disincentivize Trust Providers from making false attestations, such as some
form of reputation tracking or other accountability. Initially this will be outside the scope of the protocol; however
later Panther versions may introduce on-chain methods such as staking, DAO voting, slashing etc.
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Figure 7: Trusted Transaction Architecture

• The user’s passport photo is valid

• The user is a citizen of a given country

• The user has a given birthday

• The user is above a certain age

2. A Trust Provider verifies a driving license provided by a Panther user, and provides them
with a digitally signed statements attesting:

• The user is licensed to drive a minivan

• The user has no unspent traffic violations

These statements are received from the user by a car rental Service Provider which
verifies the signatures to ensure the statements originate from the Trust Provider.

3. A manager of a security / token sale receives signed attestations showing that a Trust
Provider certifies that an application to the sale is over 18 and a citizen of a selected list
of approved countries, in order to accept zAssets as payment in return for tokens. They
may also need to check that the participant is a qualified investor.

4. An under-collateralized DeFi lending protocol needs to check that a borrower has amin-
imum credit score before privately lending zAssets to them without requiring collateral
to safeguard the loan.
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6.5 User Journey

At a high level, a user might interact with Panther Protocol by taking steps such as the follow-
ing:

1. Generate and register a cryptographically concealed anonymous user identity.

2. Deposit supported non-private cryptoassets andwait for them to be accepted into a Pan-
ther Vault, and the corresponding zAssets registered in the Panther Pool.

3. Once in the Panther Pool, the balance of the zAssets will be visible from the user’s wallet.

4. The user may privately transfer any fraction of their balance to another user.

5. The user may withdraw any fraction of their balance into a new stealth address acces-
sible by the user.

6. The user may deploy the new zAssets into DeFi protocols as they wish.

7. The user can disclose metadata of any of their transactions, e.g. to their accountant for
tax purposes, to a centralized exchange or bank to satisfy compliance requirements, or
to law enforcement.

8. Once exited a DeFi protocol, the user may:

• deposit back into a Panther Pool to obscure its DeFi history,

• redeem the zAsset for its underlying native non-private asset collateral by burning
the zAsset. The withdrawn asset will be deposited into another newly generated
stealth address.

9. Complete KYC and/or other checks with a Trust Provider, receiving signed attestations
in return.

10. View those attestations from the user’s wallet

11. Use those attestations and/or Panther transaction history to perform disclosures to
counterparties.

7 Panther Protocol Implementation

This section presents some of the implementation plans and design decisionsmade at the time
of writing. This whitepaper is a living document, and is liable to evolve as progress is made on
the implementation.
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7.1 DevelopmentMilestones

Our plan to build out Panther Protocol with a phased approach is summarized in Figure 8.

Figure 8: Panther Protocol Roadmap

In the Beta phase, we will introduce an initial implementation supporting core Panther func-
tions of private zAsset minting, burning, and transfers, plus foundational capabilities around
transaction disclosure.

The next phase will introduce basic DeFi interoperability, key features relating to trust and
compliance, as well as community voting via the Panther DAO.

After this, new features for an on-chain governance mechanism will be added, together with
the foundations of an inter-chain private Decentralized Exchange (DEX), the first Service Prov-
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iders and Trust Providers.

Later phases will bring more advanced inter-chain functions, a privacy pricing mechanism,
and eventually complete the Panther vision by adding support for anonymous liquidity pools
and more peerchains.

7.2 Beta Functionality

The beta release will feature these design highlights:

• Panther facilitates privacy whilst retaining trust.

• Any user can privately mint, burn and transfer zAssets permissionlessly at any time,
without being forced to prove anything.

• All zAsset transactions are associatedwith a cryptographically concealed, abstract rep-
resentation of user identity.

• This concealed identity can be used by users to voluntarily and selectively disclose in-
formation about their prior interactions with Panther. It can also be used later (again,
voluntarily and selectively) by users to retroactively associate those interactions with
attestations provided by Trust Providers. This means that users can future-proof their
private transactions by using Panther zAssets to proactively prepare for the possibility
of incoming financial regulation and the corresponding compliance requirements.

7.3 Beta Protocol Sketch

From the initial beta release onwards, Panther Protocol will be a permissionless protocol
which allows open participation in all activities.

Our current design uses mixers (smart contracts) on an Ethereum sidechain to implement
Panther Pool functionality, with the Panther Vaults holding native ERC-20 assets on Ethereum
Layer 1. We will provide a token bridge to allow transfer of tokens between the sidechain and
Layer 1 DeFi smart contracts. In order to provide a seamless experience for the user, stealth
addresses and adapters will be deployed to support operations for DeFi protocols such as
Uniswap.

7.4 DeFi Interoperability

Figure 9 shows a sequence diagram illustrating a private swap transaction from zUSDT to
zDAI with Uniswap.

In summary:

1. The amount of zUSDT to be swapped is withdrawn from the Panther zUSDT mixer on the
sidechain

2. The zUSDT is bridged over to Layer 1 as USDT

3. The USDT is swapped for DAI on Uniswap
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Figure 9: Panther Uniswap example - zUSDT to zDAI
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4. The DAI is bridge back over to the sidechain as zDAI

5. The zDAI is deposited into the Panther zDAI mixer

6. The user obtains the deposit note for the zDAI

7.5 DisclosureMechanisms

All disclosure mechanisms in Panther are private, secure, and voluntary. When disclosure of
specific information is requested by a counterparty with which a user wishes to transact, the
ramifications of the user choosing not to disclose are simply that the counterparty is likely
to refuse further interactions with the user, although this is entirely at the discretion of the
counterparty. This will not affect the user’s rights to continue freely interacting with Panther
Protocol and using their zAssets to transact with other counterparties.

There are several levels of disclosure which Panther will facilitate. Roughly speaking, these
are likely to be implemented in increasingorderof sophisticationand levels of privacyattained:

• In early phases of the implementation, Panther will facilitate voluntary disclosure by
users of the full details of selected subsets of their private transactionswithin the proto-
col. This mechanismwill reveal that a subset of private transactions all involve the same
user, and that the user owns given public accounts on the blockchain, without harming
that user’s privacy by linking other transactions to that user.

• As Trust Providers are introduced, the ability will be added to voluntarily disclose the full
content of selected signed statements (attestations) from Trust Providers. For example,
a user could choose to (privately) share with a counterparty an image of their driving
license which has been notarized by a Trust Provider.

• Later, Panther versions will support more selective (fine-grained) disclosure which still
discloses confidential unencrypted data to the requesting counterparty, but reduces the
data shared tominimal levels. For example, if a user previously submitted their passport
details to a Trust Provider, they could choose to disclose only a resulting notarized state-
ment of their date of birth to a counterparty, without revealing their name or nationality.

• Finally, Pantherwill allowzero-knowledgeproofs of signedstatements fromTrustProvid-
ers, and verification of such proofs (both off-chain and as a part of on-chain transac-
tions), which will share no private information to the requesting counterparty or a smart
contract beyond the absolute minimum which needs to be shared. For example, a user
could prove that a Trust Provider has certified they are at least 18 years old, without
disclosing their date of birth or any other personal information. We envisage that zero-
knowledge proof would be most compelling for attestations of personal, private, or sen-
sitive statements such as those about the user’s age, wealth, or medical conditions.

In addition to the above, we will also explore the use of interactive versions of these proofs,
which require the user to actively participate in proof verification protocols. Without the
user’s participation, a counterparty is not able to cryptographically convince a third-party
that a previously verified proof is valid. This will allow the a greater level of privacy and plau-
sible deniability which may be a desirable property.
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8 Panther Cryptographic Protocols

Protocol design is currently underway. This section serves to indicate some of the areas un-
der consideration; it will be updated periodically to reflect significant developments.

8.1 Stealth Address Protocol

We intend to use a Stealth Address generation scheme similar to Umbra [26], an explanation
of which follows:

8.1.1 Setup

1. All users generate

(a) Keypair for encryption/decryption: ReadPubKey, ReadPrivKey keypair

(b) Keypair for stealth address generation: SpendPubKey, SpendPrivKey

2. All users then register ReadPubKey, SpendPubKey with Registry

8.1.2 Send Transaction

1. Sender retrieves recipient’s SpendPubKey, ReadPubKey

2. Generate random R

3. Calculate stealthAddress = R ∗ SpendPubKey

(a) Note that the corresponding private key will beR ∗SpendPrivKey which will only be
known to the recipient

4. To ensure R is only available to recipient, we encrypt it with recipient’s ReadPubKey as
follows:

(a) Generate ephemeral (unique to this encryption) keypair ePrivKey, ePubKey

(b) Compute Shared secret SS = sha256(ePrivKey ×ReadPubKey)

(c) Encrypt by XOR to generate ciphertext CT = R⊕ SS

(d) Note that ePrivKey ∗ReadPubKey is basically Diffie-Hellman key exchange produc-
ing ePrivKey ∗ readPrivKey ∗G, therefore only the recipient will be able to decrypt
it to the correct R with readPrivKey

5. Send transaction to stealthAddress

6. Broadcast event (stealthAddress, CT, ePubKey, token, amount)
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8.2 Zero Knowledge Proofs

ZKP will be used in Panther for

• proving correctness of minting/burning processes,

• proving the validity of statements (attestations) generated by a Trust Provider about a
user, in order to help Service Providers establish trust in that user, and consequently
fulfill their compliance requirements,

• other uses to be confirmed.

With recent rapid development in the field, there is a good selection of ZKP systems available
on the market. The key selection criteria include the strength of security assumptions, size of
proofs, proof generation and verification efficiency, gas cost (where relevant), code maturity
and whether trusted setup is required. A comparison of three types of commonly used ZKP
systems is shown in Table 213.

SNARKs STARKs Bulletproofs

Algorithmic complexity

of prover
O(N ∗ log(N)) O(N ∗ poly-log(N)) O(N ∗ log(N))

Algorithmic complexity

of verifier
≈ O(1) O(N ∗ poly-log(N)) O(N)

Communication complexity

(proof size)
≈ O(1) O(N ∗ poly-log(N)) O(log(N))

Size estimate for 1 Tx
Tx: 200 bytes,

Key: 50 MB
45 kB 1.5 kB

Size estimate for 10,000 Tx
Tx: 200 bytes,

Key: 500 GB
135 kB 2.5 kB

Ethereum/EVM verification

gas cost

≈ 600k

(Groth16)

≈ 2.5M

(estimate, no impl.)
n/a

Trusted setup required? Yes No No

Crypto assumptions ECDLP PRNG DL

Table 2: Zero Knowledge Proof Systems Compared

13Source: https://github.com/matter-labs/awesome-zero-knowledge-proofs
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8.3 Inter-chain DEX Consensus Protocol

Panther supports inter-chain exchange of assets through the peerchain mechanism.

A peerchain consists of a number of nodes. Transactions are accepted when a peerchain’s
nodes reach a consensus. Table 3 provides a side-by-side comparison between the families
of consensus protocols used by current blockchains.

Bitcoin Ethereum Casper Tendermint Avalanche Ouroboros

Family Nakamoto Nakamoto Proof of Stake Classical Snow Proof of Stake

Throughput14
≈ 7 TPS

Protocol bound

≈ 14 TPS

Protocol bound
≈ 2,000-3,000 TPS

≈ 1,000 TPS

Bandwidth bound

> 4,500 TPS

CPU bound

≈ 1,000 TPS

per Hydra head

Finality ≈ 60 mins / 6 conf. ≈ 6 mins / 25 conf. 12 sec / 3 epochs 6-7 sec block time < 3 sec 20 sec

Energy Efficient
No

ASIC-Optimal

No

ASIC-Optimal

Yes

CPU-Optimal

Yes

CPU-Optimal

Yes

CPU-Optimal

Yes

CPU-Optimal

# of Validators 3 pools w/ > 51% HR 2 pools w/ > 51% HR < 4 million15 < 200 w/o TPS loss Thousands, no HR 16

Sybil Protection Proof of Work Proof of Work Proof of Stake Proof of Stake Proof of Stake Proof of Stake

Safety Threshold 51% 51% 51% 33% 80% parametrized 51%

Table 3: Consensus Protocol Comparison

9 Governance

9.1 Panther DAO

Panther’s governance mechanism is aimed at decentralisation to the fullest degree over the
course of evolution of the protocol. The aim is to implement mechanisms such as quadratic
voting, so that community preferences are fully expressed. The roadmap (Figure 8) of the
protocol includes staged deployment which allows transitioning of the governance from an
initial centralized model to a fully decentralized one, a common approach in this industry. The
decentralized autonomous organization (DAO) would ultimately have the ability to develop and
accept improvement proposals, voting proposals shall implementmechanismswhich reduces
the changes of governance capture.

9.2 Treasury

In order to ensure that Panther protocol is sufficiently decentralized and its development is
supported, we envision a treasury function to that end. We envision that once the DAO is boot-
strapped and the initialization conditions are met, assets in treasury cannot be distributed
or re-allocated without approval of on-chain governance. Developers can post the proposals
in public. The voting of these proposals would happen, as per the governance mechanisms
implemented.

14Best estimates from online sources and conversations with core developers
15 Peak supply estimated at 120 million; minimum of 32 ETH per validator.
16Theoretically able to accommodate millions of participants.
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9.3 Pricing and EquilibriumAnalysis of Privacy

In this section, we will introduce a game notation, players, their incentives, describe the rules
of interaction, and construct a dynamic model of a system. Analyzing system behavior for
different sets of parameters helps us design optimal cost structures, in particular fees for
using dark pools. Insights obtained from the analysis and numerical simulation of this system
can be a tool used for the governance of the protocol.

Target function of the optimization problem addressed in this section is to minimize the prob-
ability of a system failure and maximize social welfare, in the lexicographic order.

Suppose there are n pools, {P1, · · · , Pn}. Each pool P is characterized with two attributes:

1. Cryptocurrency CP from the set of supported currencies {C1, · · · , Cm}.

2. Size of the pool sP .

Users arrive over the time and may choose one of the pools for their transaction. Arriving
user A is characterized by 3 attributes:

1. Native crypto-currency it holds, CA.

2. Size of a transaction he wants to make, tA.

3. Intrinsic privacy parameter, pA. This parameter measures howmuch is the user willing
to pay for private transaction.

In the following, we will describe a list of assumptions to obtain a game dynamics.

• Any liquidity provider can leave, or join other pool, if he/she does not like the current
pool. Joining other pool comes at a cost. If the new pool belongs to the same crypto-
currency, then the cost is equal to the total costs of leaving and joining new pool. In
case of joining other pool in the new currency, new cost, exchanging their currency in
the outside market is added. We denote the combined cost of changing a pool as cPo,Pn ,
where Po is a current pool and Pn is a new pool. That is, these costs have to be given as
a matrix. While this matrix can be volatile, for the sake of simplicity we will assume that
it is constant and take values at the beginning of the simulation.

• Users holding each crypto-currency arrive as in a Poisson random process. This pro-
cess has convenient mathematical properties, which explains it being frequently defined
in a time space and used as amathematical model for random processes in different dis-
ciplines spanning from sciences like astronomy, biology, geology, seismology, physics to
economics, image processing, and telecommunications. The intensity parameter λC is
estimated from the data using statistical estimation methods.

• Liquidity providers arrive as in a Poisson random process. The intensity parameter λL

is estimated from the data using statistical estimation methods.

• We assume that user sizes are distributed half-normally. Formally, if X follows an ordi-
nary normal distribution, N(0, σ2

t ), then Y = |X| follows a half-normal distribution. That
is, the half-normal distribution is a fold at the mean of an ordinary normal distribution
with mean zero. σp is typically estimated from the data using standard statistical esti-
mation tools.
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• Userprivacyparameter pA is distributedwith a truncatedhalf-normal distribution. Trun-
cation happens at the point 1 and the parameter for the half-normal distribution is σ2

p . σp

can be estimated from the data using standard statistical estimation tools. Privacy pa-
rameter implies that the user values the privacy threshold t as pA

t , that is, higher pA

means the user values privacy more.

• Both liquidity providers and users are rational and risk-neutral. This is a standard as-
sumption in economics, to allow tractable analysis of the system. Behavioral elements
in the players’ decision making is left for future research.

• Constant marginal cost of processing a transaction of size t is a function of a pool size
and transaction. It is (weakly-) increasing in the pool size and (weakly-) decreasing in the
transfer. That is, the cost incurred by the user is equal to c(sP , t)t. Formally, c is defined
as c : R+×R+ → R+ and c(x, t) ≥ c(y, t) if and only if x ≥ y for any t and c(x, t1) ≤ c(x, t2) if
and only if t1 ≥ t2. Determining a theoretically efficient function c(·, ·) is an ultimate goal
of the Panther governance and is left to future research and experimentation.

• Each liquidity provider has own opportunity cost of locking up assets. We assume that
for liquidity providerL, its constantmarginal cost is cL, which is distributed as truncated
half-normal distribution.

• Privacy threshold is a decreasing function of a pool size. The simplest example of such
function is a reciprocal, that is, the privacy threshold of a pool P with size P is equal to
p
sP
, where p is some constant. General function is denoted as p(s), where p(x) ≤ p(y) for

any x, y ∈ R with x ≥ y.

In the dynamics of the game we assume that users may choose different currency pools, if
none of their native currency pools is suitable for them, or a pool of other currency improves
his utility. Moreover, given a fixed crypto-currency of an arrived user, he/shemay choose dif-
ferent pool size. Together with the assumption 9.3, these assumptions imply that the changes
are done by the users in order to maximize their expected utility. Formally, arriving user A

solves an optimization problem:

argmax
P

UA(P ), (1)

where UA(P ) is an utility derived by the user A joining pool P . Note that here we assume a
price discovery for each user implicitly. That is, each user determines which pool/threshold
is the best for him and what price is he willing to pay for using this particular service.

Similarly, liquidity providers may choose either their native currency pool, or other currency
pool, if they find their currency pools not optimal. Formally, arriving liquidity providerL solves
an optimization problem:

argmax
P

UL(P ), (2)

where UL(P ) is an expected utility derived by the liquidity provider L joining pool P .

Simulation is done in the following way. First, we generate entry points for the users of each
currency according to a Poisson process. Similarly to users, we generate entry points for the
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liquidity providers according to a corresponding Poisson process. Second, we sort these time
points in an increasing way.

We go through all points in the increasing order. Once the user entry point is generated, we
sample its currency. Third, for each user/point, we sample its transfer size and willingness
to pay for the privacy. Depending on these parameters, we find optimal pool for the user, and
if such exists – add this user’s fee to the pool that is later distributed to liquidity providers de-
pending on their sizes. Similarly for liquidity providers, we sample their sizes and opportunity
costs to lock up their assets. If there is a pool which satisfies their requirements, they join to
the optimal pool, otherwise, they stay out.

A new liquidity provider joining a pool has two effects on the current pool members. Firstly,
it decreases portions of rewards existing members of the pool get. Secondly, it increases
attractiveness of the pool to potential future users of the system for using this particular pool.
Therefore, the total gains of the pool members increase. This trade-off is one of the important
features of the system, and optimal choice of the cost function may decide if it is positive for
the whole system or not in the long run.

In every time batch of fixed size, in our case, every month, we check how much each liquidity
provider is earning. If gains in this time interval is less than standard opportunity costs the
provider L pays for locking up the deposits, cL, we assume that he will leave the pool. Liquidity
provider leaving the pool makes the system worse. In this part of the simulation we assume
that liquidity providers do gain discovery ex-post, once their gains are realized. However,
some of them might not even join the system without knowing their expected gains ex-ante,
given the costs of joining. In the future research we plan to design mechanisms for ex-ante
gains’ calculation.

We are interested in situations (sets of parameters) so that the system size (pool sizes) does
not go to zero. The latter also depends on initial sizes of the pools. Given parameters of the
system, there must be a vector of initial sizes of pools s = (sP1

, · · · , sPn
), so that the system

grows with positive probability.

Definition 1 We call the set of points S in n dimensional Euclidean space Rn
+ such that the

system does not collapse to zero a lower bound set.

Determining the lower bound set is a cornerstone of an optimal initialization of the pools. For
generating LP’s, we assign some number of LP’s to each pool initially, with average parame-
ters. Starting from the first time batch, these LP’s act as other LP’s joining to the pools, that
is, they may also move to other pools or leave all pools altogether. We run the simulation for
different initial vectors of sizes and observe the dynamics of the sizes. If the sizes do not con-
verge to zero, we assume that they belong to a lower bound set.

The main parameter to optimize is the function c(·, ·), constant marginal cost of processing
a transaction17. At this iteration we optimize it across the whole system. However, at later
stages, the optimization can be done on the pool level, by the members of the pool.

17Code can be found here: https://github.com/pantherprotocol/simulations/blob/master/simulation.cpp
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10 Tokenomics

The Panther Token ($ZKP) is a finite supply privacy-preserving governance token that repre-
sents a right to vote on governance proposals on the Panther Protocol. It is used in several
instances to support the function of the protocol and provide incentives for its maintenance.
The token has the following characteristics:

There will only ever be 1,000,000,000 $ZKP.

Later on in the process, $ZKP is used to reward Privacy Miners for providing zAssets to the
Panther Pool, which could be viewed as a specialized form of liquidity mining. $ZKP is also
used to pay relayer fees for new private Ethereum addresses.

In the early phases of Panther based upon Ethereum, $ZKP could be bought on Uniswap and
used for the following:

1. To pay relayer node fees to responsible Gas Station nodes.

2. To compensate privacy miners, using open market pricing mechanics, for creating zAs-
set transactions within the Panther Pool on Ethereum.

3. To fund thePantherDAOand futurePanther ImprovementProposals (PIPs)with aportion
of transaction fees, at a rate set by $ZKP token holders.

4. To compensate Trust Providers for providing attestations about users.

Transactions and smart contracts are processed using native ETH to enable a simple user
experience when using zAssets and interacting with DeFi.

$ZKP supply will be issued as follows18:

• 20 percent of total supply is issued to founders, team and advisors of Stellium, the com-
pany contracted to build Panther, with a gradual unlocking over 3 years.

• 20 percent of total supply will be sold by Stellium to the public with a gradual unlocking
over 1 year.

• 10 percent of total supply will be sold by Stellium to private strategic investors with a
gradual unlocking over 3 years.

• 40 percent of total supply will be reserved for staking rewards and emitted using an
exponential decay issuance curve over 10 years to incentive early adopters and stakers
on Panther Protocol.

• 10 percent of total supply will be reserved by the Panther DAO for community engage-
ment and Privacy Mining incentives.

In the second phase of Panther, in the interchain DEX implementation, $ZKP could be used for
paying various fees on the DEX.

In a later phase after the Panther DAO is created, governance decisions related to treasury
management will move from Panther Foundation to Panther DAO.

18Correct at the time of writing but subject to change
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11 Conclusions and Future Plans

In this paperwe introduced the Panther Protocol, which serves to demonstrate that it is possi-
ble to combine privacy, trust, and composability in a single protocol, all of whose participants’
correct behavior is informed and incentivized by well-founded game-theoretic models.

In the next phases, we will continue our journey to fulfil our vision. Panther Protocol will be
developed to enhance the level of decentralization, and to become an industry-leading Layer
1 inter-chain DEX with privacy features.

This whitepaper is a living document and will be updated throughout Panther Protocol’s de-
velopment to reflect the current status of the project.
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